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NO~S~ETRI~ BENDING OF A PLATE REI~~FORCED 
BY A SYMMETRIC SYSTEM OF RADIAL RIBS* 

3-M. NULLHR and M.B. RYVKIN 

A solution is given in quadratures for the bending pr+lem of an elastic plate re- 
inforced cyclically by a symmetric system of arbitrarily loaded radial elastic rib- 
stiffeners; the bending stiffness of the ribs varies as a power of the radius and 
can be constant in particular. The limit case is considered for this problem, the 
bending of a plate a star system of finite absolutely rigid ribs. 

The reinforcing elements of thin-walled structures (belts, straps, stiffeners) are ordin- 

arily arranged in a regular manner. However, nonregufar loads induce asymmetry in the state 
of stress and strain of a strucutre and methods of solving periodic problems become inapplic- 
able. Most interesting results on taking account of arbitrary symmetry of the domains in 
boundary value problems are obtained in /l.,2/. As is noted in /3/, boundary value problems 
for domains possessing cyclic, translational, screw, and spiral symmetric are solved effect- 
ively by traditional analytic methods after the application of a discrete or finite discrete 
Fourier transformation, Problems solvable by the method of integral transforms /3/, by the 
Wiener-Hopf method /4,5/, by Gakhov and Muskhelishvili methods /6/, were studied earlier by 
this method. This paper bordersonthese investigations and demonstrates the example of reduc- 
ing boundary value problems for symmetric domains of the type mentioned to a Barnes differ- 
ence equation. 

1. Let an elastic plate O<rr(c~, O<O<Zn (Fig.1) of thickness h, Young’s modulus 
E, and Poisson ratio v be reinforced by a cyclically symmetric system of Nidentical radial 

ribs, elastic rods O<r (oo,~ =2ak with the bending stiffness S(r)=SF*, where r,fl are 
polar coordinates, the angle ,8 is measured clockwise, a=nN-',k=0,1,...,N-_,N >I,S> 
O,o<---1. A transverse load q~ (r), relative to the plate, is applied to the k-th rod, a 
transverse force P,, and bending moments McI,H02 directed along the rays 8 =5/.r5c and 8 = 0 
act on the point r = 0. There are no moment interactions between the rods and the plate,i.e., 
the bending moments in the plate are continuous when going through the contact lines, there 
are not torsional strains of the rods or they are considered small and not taken into account, 
and kIe2 = 0 for N,(2. Find the deflections of the ribbed plate under the condition of its 
simple support at infinity. 

Let us partition the plate into Nidentical sectors by 
the rays @ = (2k + l)a, k = 0, 1, - .., N - 1 and let us in- 
troduce a polar coordinate system r,y with axis y=o 
directed along the rib, into each. The components of the 
state of stress and strain will be denotedbythesuperscripts 
j = 1 for -a<~<0 and j=2 for O<y\(a. Then the 

deflections loxjin the k-th sector should satisfy the plate 
bending equation 

Fig.1 

AAlytj(r, y) =0 (1.1) 

the conditions of contact with the stiffener ribs, the con- 
ditions of matching of the solutions in adjacent sectors,and 
the condition at infinity 

(1.2) 

‘j’ 
dr’ S(r) aZW$r~‘O’ ] [ = NRP(r, 0) - Nkl(r, 0) + qk (r) 

N,‘=- D 

(1.3) 

-- 
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Here P is the principal vector, Ml and IM* are the principal moments of the loads qr- (1.) 
directed along the axes I3 = S/,n and 0 = 0. 

Condition (1.5) corresponds to the mechanically obvious fact that for all a<----l the 
rib stiffness at infinity equals zero, and therefore, the states of stress of the ribbed and 
rib-free plates under consideration that are laoded by the force P,tP and the moments 
MO,+- M,,s=l, 2 at the center as r-t 00 beccme indistinguishable; Simple support is 
characterized by the absence of the component 0 0-9 in (1.5). For w = -1 the plate re- 
mains ribbed even at infinity, and inthis case condition (1.5) is not used. 

2. Following /3/, we apply a finite discrete Fourier transformation to the problem (1.1) 
- (1.5) 

2X-l N -* 

g* (r, yv I) = z gk (r7 v) eaiak’, gk try y) =$ x & tr7 y. I) e-ciakL (2.1) 
x-0 I=0 

Then the problem (l.l)--11.5) goes over into a boundary value problem for the transform 
w*j (r, y, 1) in the cell 0 < r < 00, -a < y < a 

AAw,j (r, y, I) = 0, w,l” (P, 0, 1) = w**” (r, 0, i), n = 0, 1, 2 (2.2) 
3%’ (r. 0.4 $ [S(r) ara 1 =N,a(r,O,Z)--N,‘(r.O,Z)$_q*(r,Z) (2.3: 

w*‘” (r, -a, I) = ezialwSan (r, a, I), n = 0, 1, 2, 3 

2~~~ (r, y, 2) is lfaa-lD-l ((PO + P) lSolrZln r - 

[(MO + M) &e-iv + (M. + M) &v_~, teiv] r In r + 0 (r) 

M, = MeI f iMot, M = MI + iM,, o < -1 

(2.4) 

12.51 

where Bkl is the Kronecker delta. 
We seek the solution of (2.2)-(2.5) in Mellin integrals that satisfy conditions (2.2) 

and (2.4) 

w+j(r. Y, 4 - Y& ! B (Pv 1) 
~nl2(p-l)a i 

sin 2 (p - 1) a co9 (p - l)y - 

(-l)j@j-Sin(p- l)y-.&#$[sin2(p+ l)acos(pf 1) Y’- 

(- 1)j fij+ sin (p + 1) v]] rl-p dp + x (0) r2 

fij* s fir* (p, I) = fl* (p, 1) + (-1)jsin 2Za 

j3* E pf (p, 1) = cos 2 (p + 1) a - co9 2Za 

Here I(O) = 0 for o < -1, X(U) = c = const for o=-1,L is the line 
a -s, e > 0 is a sufficiently small constant, and c1 is a numer dependent on 
(2.6) into (2.31, introducing the unknown function A (p) by the relationships 

A(p) z A(p, 1) 3 me1 (p, 0, Z) - ff,‘(p, 0, Z) - F, (p, Z) = 
8Dp(l -p)sin-‘2(p- I)@B(p, 1) -p+ (p, Z) 

m 

g (p) = S g (r) rp+l dr 

and following /7/, we obtain the Barnes equation 

(2.6) 

Rep = 1, h = 

1. Substituting 

(2.7) 



A (P - 0) = F (PI A (P) + f (PL P E L 

F(p) = F (p, I) I Q (P - 4 (P + i- 0) ‘PI (P) 
(P + 1) PI (PI 

1 Q-i&- 

qpl (P) = 'pl @, 1) = (p + 1) B’ @) sin 2 @ - 1) a - 

(p - 1) B- (p) sin 2 @ + 1) a 

(P2 (P) = ‘pa (P? 0 = q+ @) B- @), f @) = f @7 4 = 

F (p) q+ (p) 
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(2.8) 

for the function A @)that is analytic in the strip Q = {p 1 hQ Rep <h - co} and tends to 

zero for IImp j-ho0 within this strip. 

3. Let us consider (2.8). We first investigate the solution of the homogeneous equation 

X @ -0) = F@)X @), p=L (3.1) 

that is analytic in 52. 
We introduce the function Y(p) in the form /8/ 

Y (P) = x (P) p (P), P E Q+; y @) = x (P), p E !a- 

Q+={pIh<Rep<a), 8-=(pJa<Rep<h-coo) 

(3.2) 

We denote the functions analytic in Pand Q-by the superscripts plus and minus. If 
the function F-r(p) is analytic in the strip O+, then by virtue of (3.2) the function X (p) 
will be analytic in 52 upon compliance with the equality X (P)E Y-(p), Rep = a and the bound- 
ary condition 

Y+(p)=F@)Y-@), Rep=a 

Since it follows from (3.1) and (3.2) that Y(p- co)= Y 
(3.3) should be solved in the class of autanorphic functions 

Let the function f @) by analytic in Q+. Then exactly 
will reduce to the problem of a jump 

(3.3) 

(p), PEL, the Riemann problem 
with the automorphicity strip Q. 
as (3.1), the equation (2.8) 

W+(p)-W-(p)=fl(p), Rep=e (3.4) 

in the class of automorphic functions W (p)determined by the relationships 

Z (P) = A (P) X-’ (P), fl @) = f (P) X-’ @ - o) (3.5) 

w (P) = 2 @) + fi @)7 P E s-J+, w (P) = 2 (P), P E Q- 
2 (p) = W- (p), Rep = a 

The boundary value problems (3.3) and (3.4) are solved by quadratures by F.D. Gakhov /9/. 
In particular, if the index of the function F(p) is zero (Ind F(p)= 0) on the line Rep = a 
and In F (p), fi (p) E H, where H is the class of function satisfying the Holder condition, then 
according to /9/ the canonical solution of the problem (3.3) and the solution of the problem 
(3.4) have the form 

Y(p)=exp[+-a~hF(t)ctg 
a-im 

+i! dt> 

w (PI = &- T [ 
a-b 

h(t) ctg + + i] dt 

(3.6) 

Following /lo/, we give a more effective solution of the problem (2.8) than (3.1)-(3.6). 
Let X (p) be an analytic solution in Cl for the problem X(p- a)= 
introduce the function 

-F (p) X (p), p E L. Let us 

2 (P) = A (P) X-’ (P), fi (p) = f @) X-’ (P - o) 
RJ @) = z (P) - fl (PL P E Q’; w (P) = z (p), p E n- 

(3.7) 

Then if fl (p) 
problem of a jump 

is a function analytic in Q+, thentheproblem (2.8) again reduces to the 

W+@) - W- (P) = -fl. (p), Rep = a (3.8) 
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but with another periodicity condition: w (P - o) = -W(p), Rep = h. If i, (P) E a for 
Rep=a, the solution of this problem has the form 

0-i-b 

W(p)=--& 1 fl(t)sin-l-Q-+-& 
a--i= 

(3.9) 

and differs from (3.6) by the exponential convergence of the integral. 
The equation (2.8) is reduced to a Carleman problem in /11,12/. As in /lo/, another 

method is used below. After factorization F (P)== F1 (P) F, (PL where F,(p) is an elementary 
function, In F2 (p)~ H, Ind F, (p)= 0, the problem (3.1) with coefficient F, (p) is solved by 
the Barnes method, the problem (3.1) with the coefficient F,(p) and the problem (2.8) are 
solved by (3.2), (3.6) and (3.7), (3.9). 

4. Let us investigate three case: 1 = 0, 1 = 1, 1 = 2, 3, . . . , E I’!, (iy + I)], where E 1.~1 is 
the integer part of z, and N > 2. This is sufficient for finding the function d (p, 1) for 
all 1. 

Let 1= 0. Then for a selected kernel of the Mellin transform, the highest term in the 
asymptotic formula (2.5) is determined by the residue of the integrand (2.6) at the point p = 
-1, therefore, a = -1. We put 

F, (P, 4 = ‘~1 (p, 1) ‘pz-’ (P, 0 tg [‘i,m-’ (P - 41 (4.1) 

According to (2.8). the asymptotic of the function F,(p, 1) has the following form for 

large I Y I 
Fa (a + iy, 1) = 1 i- 0 [y exp (-2~2 I Y I)1 + 0 [exp @I y lo-')] (4.2) 

The functions (~~(p,O),r=1,2 are real on the imaginary axis, p=o is a simple zero of 
the function 'pl (p,O), p = -1 is a simple and double zero of the functions 'pl (p,O) and 'pz(p, 

0); it can be shown that there are no other zeroes of the function cp,(p,O) in the strip 
--1<Rep,<O . Hence, it is seen that the indices of the function ml@, 0) (F~-I (p, 0) equal ---‘I, 

and 'I?, on the lines Rep = --E and Rep=-I-E, IndF,(p,O)=O on the line Rep==-I, 
and InF, (p,O)~ff by virtue of (4.1). In conformity with Sect.3, taking into account the 
conditions of the regularity and decrease of A (p,l) in 9, the general solution of (2.8) can 
be written as 

A(p,O)= A&,0) [cl + F ct tg F + + sin w 2 (p, o)] (4.3) 

A,, (p, 0) + (p + 1) (- oQ)-p’” I? (7) x 

ctg X(P---a) - cos-19 x (p, 1), 0 < - 1 

A (p, 0) -c A0 (p, 0) [C, - cos np Z (p, 1)1 
A0 (p, 0) = @‘I’ (p f 2) cos-l [‘/,n (p - a)lX (p, I), 61 = - 1 

x (p, 1) = Fz-’ (p, 1) y (p, 4. Z (p, 1) = W (P, 4 - fl (PT 1) 
k<Rep <a 
X (p, 1) = Y (p, 1). Z (p, 1) - W (P, 4, a -c Re P < A. - CO 

*-+im 
Y(p,L)sY(p)=exp[-&- 5 lnF2(t,1)ctgedt1 

e--lo2 
a+iZC 

W(p,1)~W(p)=-& 1 fl(t,L)sin-‘vdt 
a-im 

,Z(P-a) - 
ft (p, 4 = /I (PI= 4’ b. 4 CM-’ w 4* (P> 4 

(4.4) 

(4.5) 

Here a = -I,1 = O,r (p) is the Gamma function. The constants C, and Cz are found for 
o <- 1 from the condition (2.5) by using the asymptotic 0 (rd lnr)+ O(rl) + 0 (r) of the 

integral (2.6), which can be obtained by shifting the contour Lto the right after the point 
p= -1, and adding the residue at this point to (2.6). By using (2.7) we insert the func- 

tion A (p,l) into (2.6). The expression (4.3) shows that the factors for C, and Z(p, I) have 
simple poles at the point p = - 1, the factor for C, has a second-order pole. Residues of 

the integrand of (2.6) at the simple pole are proportional to rz, the residue at the second- 

order pole is the sum of functions proportional to r‘l and rz In r. Equating the factors for 

rz In r in (2.5) and in the asymptotic of the solution (2.6), (2.7), (4.3)-_(4.5), we obtain 

C1 = &A;‘(- 1 ,O)= - P"n'/j (2o)-'l* Q-l/o ,.\ (- o)'/~-l/~r-' ("-l)y-L(_ 1) (4.6) 
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Taking into account that there is no component O(r)) in (2.5), we obtain 

C2d1{ ln(;OQ) + r’F(;_y)-l’ - Y,(-l)- v- Tj (a)} _ W(- 1) (4.7) 

--I+iaE 

yl@) = .& 1 [lnFz(t,O)]'ctg ++ dt 
-_I--im 

q (cc) = a ctg 2a + 'iSa cos 2a + 2 + 'I,PP,-', a <'izn 

q (a) = 3/i + PP,-', a = '/,n 

In the case 0=--l, we determine the constant C, from the equilibrium condition for 

a system of beams 

kz i [Nkl(r,O) -Nk9(r,0) --it (Oldr= PO 

which is, according to (2.1) and (2.71, equivalent to the condition A (-l,O)= P,. Hence, 
there also follows from (4.4) 

C, = n'h (2a)-'Iz(P, + 'izP) - W (--1,O) 

We determine the constant C from the simple support condition for the ribbed plate, which 
is equivalent to the absence of a term proportional to r’ in the asymptotic of the deflection 
1u (r, y) for large r. By virtue of (2.61, we obtain for N> 2,(a ('1, n) 

Cc_ fly+-) 
soQ G {IlnQ + r’(l) + YI(- 1) + acks2a + 

1/3acos2a] [Cl + W(- 1) + l/z Qy-l (- 1) (&)“‘P] + 

2Cl+2W(--)+Wl(--1)+ 

l/z QY-* (- 1) (#b*‘(- 1) + PI) 
-1ii.x 

WI(p)=4 5 fl'(t)sin-*x(p-Qdt 
--l-kc 

The case w = --1, N = 2 is of only slight interest. It corresponds to the problem of 
bending of a plane reinforced by an infinite beam of constant stiffness. In Cartesian coord- 
inates this problem is solved by elementary means. 

Let I= 1. Then the highest term of the asymptotic (2.5) is generated by the residue of 
the integrand (2.6) in the second-order strip p = 0; the functions cp, (p,1) are real on the 
imaginary axis and do not vanish for P # a the function 'pl (p, i)cp,-‘(p, 1) has a simple pole 
at the point p=o, therefore, a = 0 in (2.61, (2.8) and (4.1). By using (4.2) to confirm 
the conditions lnF, (p,l)EH and IndF, @,I)= 0, the solution of the problem (2.8) can be 
written for all o<--1 

A (p, 1) = A, (P, 1) ICS + cos (no-‘p)Z (p, 1)1 
A, (p, 1) = @ + 1) (-oQ)-P’T (1 - o-l& cos-1 (‘/*nw-‘p) x x (p, 1) 

(4.8) 

The functions entering here are evaluated by means of (4.51 for a = 0, 1= 1. Equating the 
factors for r In r in (2.5) and in.the residue (2.6) taken at the pole p= 0, we obtain 

C3 = M,J,-l (0, 1) - 2 (0, 1) = n’i~ (-4ao)-‘~*(Mo + ‘l&f) - W (0, 1) (4.9) 

Let us note that the transform found entirely determines the solution of the homogeneous 
problem of bending of a ribbed plate by moments M,, and M,,; the quantities M,, and M,, doe 
not enter into the solution of the problem (2.2)-(2.5) for 121. 

Let 1 = 2, 3, . . ., E Pi, (N + I,], then we have 

A (p, II = Ao (p, 1) cos (xk’p) 2 (p, Zj (4.10) 

Ao ~JI, 1) = (- coQ)-plo (p + 1) I? (1 - 6) cos~c~s-’ TX (P, l) 

F* (P, 4 = -91 (PT 0 ‘PI-’ (P, 4 Q (JW’P) 
The remaining functions are taken fro-n (4.5) for a = 0. As should have been expected, 

the solution (4.10) does not contain homogeneous solutions and new derivative constants. 
From the definition of the transform (2.1) there results the identity -- w,, (r, Y, N - I) = 

~.+(r,y,Z). It hence follows that (2.6)-_(4.10), (2.1) yield the solution of the boundary value 
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problem (2.2)-(2.5) for all 1. In the general case this solution is expressed by the sum .\ 
of triple exponentially-convergent integrals; as is seen from the estimate (4.2), the rate of 
convergence diminishes as 1 w 1 grows. To improve the convergence for large lo/ and to pass to 
the limit as / 0 I -+m, the solution of the homogeneous Barnes equation (2.8) is written in 
a different form /7/ 

(4.11) 

A, (p, 1) = W-‘Q-PI”p (p C 1)P (- omlp) sin-’ (rco-‘p) x 

T (Pt 4X (P7 1) 
F* (P, I) = ‘PI (p, I) ‘p?_’ (p, 1) tg np, I = 0. 1 

A, (p, I) = ‘/*w-1 (Cd?)-Pl”p (p + l)F (-o-‘p) x 

sin (2~x0~lp) T-l (p, 0) X (p, 1) 

F, (P, 1) = ‘~1 (P, 1) ‘~a-’ (p, 1) ctg xp, 1= 2,3, . . ., E IV2 (ii- I)1 

T (p. w) = ‘“--;--P)r(~-~)r-1(2&) x 

r_’ (* _ J - ‘k- P ) (1 _ &ye-’ 

If N = 2, then instead of the first two formulas (4.111, simpler formulas can be used 

Ao(p,O)=- (4.12) 

A, (p, 1) = o-‘p (p + 1) (~Q)-P/u sin-‘(no-‘p)T (l/:p, 1/yo) 

5.As o+--00, the beam stiffness S (r)=SIw+ 1 diminshes (increases) without limit for 
all r> 1 (r (I), and in the limit the system of infinite beams degenerates into a finite lin- 
ear star stamp O,< r<l, 0 =2ak (Fig.2). The fundamental conditions (1.3) go over into mix- 
ed conditions here 

CFVL~,~ (r, 0)/W = 0, o < r < 1; Nkl (r, 0) - N,” (r, 0) = qr (r), 1 <r <CO 

Fig.2 

(5.1) 

The remaining conditions do not change. 
The Wiener-Hopfmethod could be applied to this problem 

after it had been reduced to a boundary value problem for 
the transform w*(r, y, I) of the type (2.2)-(2.5). Following 
/7/ here, we again write the solution down for the case 
qt (r) s 0, k = 0.1, . . ., N - 1, by passing tothe limit as o+ 
-cQ in the results obtained. The form of the solution of 
the problem (5.1) in the transforms w*j(r, y, 1) here con- 
serves its previous form (2.61, (2.7). According to (4.11) 
T (p. -0) = nr (p -i- 1/z) r-’ (p i- 1). Hence, we also obtain from 
the solution (4.3)-_(4.5), (4.8), (4.11): 

A (P, 0) = 5~+ r (P + w r-1 (p + 2) x (p, 0) [c, + c, (P+W 

A (p, 1) = ~+c, (P + 1) up + v,) r-l(p + 1) x (P. 1) 

A (p, I) 3 0, 1 = 2, 3, . . ., E Pi, (N + I)1 

X (P, 4 = Y (P, 4 F,-’ (P, 0, Re P c a 

X (p, 1) = Y (p, L), Re p > a, a = --6~ 

Y (p, I) = exp [A al_ In F2 (t. I) L] 
t-_y 

a-b 

(5.2) 
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where the functions F, (p, 1) are determined by (4.11). 
The arbitrary constants are found from condition (2.51, as in Sect.4, by using an expan- 

sion in residues 

c, = Jl%+P” [Y (-1, 0)1-l 

c, = c, (r'(1) - n-W’ (I/,) - Y, (- 1) - 11 (a)} 

Cs = xaI*(2a)-'l*M0 

(5.3) 

Passing to the limit in o in (4.12) for N = 2, we obtain the simpler formulas 

A (~9 0) = n+r (1 -t V~P) r-’ (V2 + vIp) IC, +- c, tp + I)] 

A (P, 1) = C&l' (P + 1) r (V2 + v2p) r-1 (1 + 11~ p) 
C, = xP,, C, = V2c1 w(l) - n-w(v,) - 31, CJ = no,, 

(5.4) 

The solution (2.61, (2.7), (5.4) corresponds to impression in a plate, simply supported 
on a circumference r = R,R>l of a linear stamp O.<r<l. 0 = 0, 0 = x. 

The passage from the transform (2.6), (2.7). (5.4) to the solution of the problem (l.l), 
(1.2), (5.11, (1.4), (1.5) is accomplished in the k-th sector by the inversion formula (2.1). 

Let us clarify the behavior of the contact pressure ANk(r)= N,l(r,O) -NkZ(r,O) at the 
edge of the k-th rib of a star stamp. According to (2.1), (2.7), the double transform (dis- 
crete and Mellin transformations) of the function AN*(r) equals A (~9 0. By virtue of (5.2), 
for large p,Rep>a, we have 

A (p, 0) N n+ (C,p-Q + C,p’/x) (5.5) 

A (P, 1) - Cgz+p’la, A (p, I) G 0 (1 = 2, . . ., E IVa (N f l)]) 

There is an asymptotic connnection between the function f(r) and its transform F+(p). If 

F+ (p) = if (r) rp dr - Ap-q-1, Rep>a, --l<r1<0 
0 

then f (r) N Ar-’ (vj + 1) (1 - + as r + 1 - 0. Using this connection for the original function 
AN, (r.2) and differentiating the result according to (2.1), (5.5) with the identity 
N - 1) = AN,(r, I) taken into account, we obtain (k = O,l,.. .,N - 1) 

AN, (r, 

c,+2 Re(C,e-*'=fi) ) r--, 1 __o 
2 (1 - r)Q 1 

It can be shown that the elastic strain energy of the plate is here bounded in the neigh- 
borhood of the rib ends. 

If N=2, 
Indeed, for 

then the function AN,(r) is expressed in radicals in the whole band (0,l). 

r<i according to the Cauchy theorem the contour integrals in the formula 

AN,(r)= & s IA (P* 0)-t (- $A(& i)] r-p-*dp; ks 0.1 
L 

can, according to (5.4) 
r (1 + l/*p) and r (I/$ 

, be replaced by series of residues at the poles of the Gamma functions 
+l/,p) starting with the point p= -2. 

formulas 9.03 and 9.05 from /13/, 
Summing these series by means of 

and taking account of the equality 
obtain 

r' (i) - s'W (I/,) = 2 1s 2, we 

AN,(r)= + 
1 211-12-3 (1-- 2 (1 - rz)*/r 1 _ (- i)“M,r 

(1 - $)'I' 

For II{,,,= 0 this agrees with the result in /14/ found by different means. 

6. The constraint x),2 was imposed in Sect.4. If N= i then the solution can be 
obtained by following /7/ and not applying the discrete transformation. 
1-5 can also be used by changing the function 

The results of Sects. 
F, (p.1) somewhat since the real zeroes of the 

function ~(p.1) are distributed differently for N= 1. 
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